3.217 \(\int \frac{\sec (e+f x) (c+d \sec (e+f x))^5}{(a+a \sec (e+f x))^2} \, dx\)

Optimal. Leaf size=258 \[ \frac{5 d^2 (2 c-d) \left (2 c^2-3 c d+2 d^2\right ) \tanh ^{-1}(\sin (e+f x))}{2 a^2 f}-\frac{d \left (c^2+10 c d-12 d^2\right ) \tan (e+f x) (c+d \sec (e+f x))^2}{3 a^2 f}-\frac{d \tan (e+f x) \left (d \left (20 c^2 d+2 c^3-57 c d^2+30 d^3\right ) \sec (e+f x)+4 \left (-44 c^2 d^2+10 c^3 d+c^4+40 c d^3-12 d^4\right )\right )}{6 a^2 f}+\frac{(c-d) (c+10 d) \tan (e+f x) (c+d \sec (e+f x))^3}{3 f \left (a^2 \sec (e+f x)+a^2\right )}+\frac{(c-d) \tan (e+f x) (c+d \sec (e+f x))^4}{3 f (a \sec (e+f x)+a)^2} \]

[Out]

(5*(2*c - d)*d^2*(2*c^2 - 3*c*d + 2*d^2)*ArcTanh[Sin[e + f*x]])/(2*a^2*f) - (d*(c^2 + 10*c*d - 12*d^2)*(c + d*
Sec[e + f*x])^2*Tan[e + f*x])/(3*a^2*f) + ((c - d)*(c + 10*d)*(c + d*Sec[e + f*x])^3*Tan[e + f*x])/(3*f*(a^2 +
 a^2*Sec[e + f*x])) + ((c - d)*(c + d*Sec[e + f*x])^4*Tan[e + f*x])/(3*f*(a + a*Sec[e + f*x])^2) - (d*(4*(c^4
+ 10*c^3*d - 44*c^2*d^2 + 40*c*d^3 - 12*d^4) + d*(2*c^3 + 20*c^2*d - 57*c*d^2 + 30*d^3)*Sec[e + f*x])*Tan[e +
f*x])/(6*a^2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.437776, antiderivative size = 315, normalized size of antiderivative = 1.22, number of steps used = 8, number of rules used = 8, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.258, Rules used = {3987, 98, 150, 153, 147, 63, 217, 203} \[ -\frac{d \left (c^2+10 c d-12 d^2\right ) \tan (e+f x) (c+d \sec (e+f x))^2}{3 a^2 f}-\frac{d \tan (e+f x) \left (d \left (20 c^2 d+2 c^3-57 c d^2+30 d^3\right ) \sec (e+f x)+4 \left (-44 c^2 d^2+10 c^3 d+c^4+40 c d^3-12 d^4\right )\right )}{6 a^2 f}+\frac{(c-d) (c+10 d) \tan (e+f x) (c+d \sec (e+f x))^3}{3 f \left (a^2 \sec (e+f x)+a^2\right )}+\frac{5 d^2 (2 c-d) \left (2 c^2-3 c d+2 d^2\right ) \tan (e+f x) \tan ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a (\sec (e+f x)+1)}}\right )}{a f \sqrt{a-a \sec (e+f x)} \sqrt{a \sec (e+f x)+a}}+\frac{(c-d) \tan (e+f x) (c+d \sec (e+f x))^4}{3 f (a \sec (e+f x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(c + d*Sec[e + f*x])^5)/(a + a*Sec[e + f*x])^2,x]

[Out]

(5*(2*c - d)*d^2*(2*c^2 - 3*c*d + 2*d^2)*ArcTan[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a*(1 + Sec[e + f*x])]]*Tan[e + f
*x])/(a*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) - (d*(c^2 + 10*c*d - 12*d^2)*(c + d*Sec[e + f*x])
^2*Tan[e + f*x])/(3*a^2*f) + ((c - d)*(c + 10*d)*(c + d*Sec[e + f*x])^3*Tan[e + f*x])/(3*f*(a^2 + a^2*Sec[e +
f*x])) + ((c - d)*(c + d*Sec[e + f*x])^4*Tan[e + f*x])/(3*f*(a + a*Sec[e + f*x])^2) - (d*(4*(c^4 + 10*c^3*d -
44*c^2*d^2 + 40*c*d^3 - 12*d^4) + d*(2*c^3 + 20*c^2*d - 57*c*d^2 + 30*d^3)*Sec[e + f*x])*Tan[e + f*x])/(6*a^2*
f)

Rule 3987

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(n_), x_Symbol] :> Dist[(a^2*g*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x
]]), Subst[Int[((g*x)^(p - 1)*(a + b*x)^(m - 1/2)*(c + d*x)^n)/Sqrt[a - b*x], x], x, Csc[e + f*x]], x] /; Free
Q[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && (EqQ[p,
 1] || IntegerQ[m - 1/2])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 150

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 153

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (e+f x) (c+d \sec (e+f x))^5}{(a+a \sec (e+f x))^2} \, dx &=-\frac{\left (a^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{(c+d x)^5}{\sqrt{a-a x} (a+a x)^{5/2}} \, dx,x,\sec (e+f x)\right )}{f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=\frac{(c-d) (c+d \sec (e+f x))^4 \tan (e+f x)}{3 f (a+a \sec (e+f x))^2}+\frac{\tan (e+f x) \operatorname{Subst}\left (\int \frac{(c+d x)^3 \left (-a^2 \left (c^2+6 c d-4 d^2\right )+3 a^2 (c-2 d) d x\right )}{\sqrt{a-a x} (a+a x)^{3/2}} \, dx,x,\sec (e+f x)\right )}{3 a f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=\frac{(c-d) (c+10 d) (c+d \sec (e+f x))^3 \tan (e+f x)}{3 f \left (a^2+a^2 \sec (e+f x)\right )}+\frac{(c-d) (c+d \sec (e+f x))^4 \tan (e+f x)}{3 f (a+a \sec (e+f x))^2}+\frac{\tan (e+f x) \operatorname{Subst}\left (\int \frac{(c+d x)^2 \left (-3 a^4 (11 c-10 d) d^2+3 a^4 d \left (c^2+10 c d-12 d^2\right ) x\right )}{\sqrt{a-a x} \sqrt{a+a x}} \, dx,x,\sec (e+f x)\right )}{3 a^4 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{d \left (c^2+10 c d-12 d^2\right ) (c+d \sec (e+f x))^2 \tan (e+f x)}{3 a^2 f}+\frac{(c-d) (c+10 d) (c+d \sec (e+f x))^3 \tan (e+f x)}{3 f \left (a^2+a^2 \sec (e+f x)\right )}+\frac{(c-d) (c+d \sec (e+f x))^4 \tan (e+f x)}{3 f (a+a \sec (e+f x))^2}-\frac{\tan (e+f x) \operatorname{Subst}\left (\int \frac{(c+d x) \left (3 a^6 d^2 \left (31 c^2-50 c d+24 d^2\right )-3 a^6 d \left (2 c^3+20 c^2 d-57 c d^2+30 d^3\right ) x\right )}{\sqrt{a-a x} \sqrt{a+a x}} \, dx,x,\sec (e+f x)\right )}{9 a^6 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{d \left (c^2+10 c d-12 d^2\right ) (c+d \sec (e+f x))^2 \tan (e+f x)}{3 a^2 f}+\frac{(c-d) (c+10 d) (c+d \sec (e+f x))^3 \tan (e+f x)}{3 f \left (a^2+a^2 \sec (e+f x)\right )}+\frac{(c-d) (c+d \sec (e+f x))^4 \tan (e+f x)}{3 f (a+a \sec (e+f x))^2}-\frac{d \left (4 \left (c^4+10 c^3 d-44 c^2 d^2+40 c d^3-12 d^4\right )+d \left (2 c^3+20 c^2 d-57 c d^2+30 d^3\right ) \sec (e+f x)\right ) \tan (e+f x)}{6 a^2 f}-\frac{\left (5 (2 c-d) d^2 \left (2 c^2-3 c d+2 d^2\right ) \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-a x} \sqrt{a+a x}} \, dx,x,\sec (e+f x)\right )}{2 f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{d \left (c^2+10 c d-12 d^2\right ) (c+d \sec (e+f x))^2 \tan (e+f x)}{3 a^2 f}+\frac{(c-d) (c+10 d) (c+d \sec (e+f x))^3 \tan (e+f x)}{3 f \left (a^2+a^2 \sec (e+f x)\right )}+\frac{(c-d) (c+d \sec (e+f x))^4 \tan (e+f x)}{3 f (a+a \sec (e+f x))^2}-\frac{d \left (4 \left (c^4+10 c^3 d-44 c^2 d^2+40 c d^3-12 d^4\right )+d \left (2 c^3+20 c^2 d-57 c d^2+30 d^3\right ) \sec (e+f x)\right ) \tan (e+f x)}{6 a^2 f}+\frac{\left (5 (2 c-d) d^2 \left (2 c^2-3 c d+2 d^2\right ) \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2 a-x^2}} \, dx,x,\sqrt{a-a \sec (e+f x)}\right )}{a f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=-\frac{d \left (c^2+10 c d-12 d^2\right ) (c+d \sec (e+f x))^2 \tan (e+f x)}{3 a^2 f}+\frac{(c-d) (c+10 d) (c+d \sec (e+f x))^3 \tan (e+f x)}{3 f \left (a^2+a^2 \sec (e+f x)\right )}+\frac{(c-d) (c+d \sec (e+f x))^4 \tan (e+f x)}{3 f (a+a \sec (e+f x))^2}-\frac{d \left (4 \left (c^4+10 c^3 d-44 c^2 d^2+40 c d^3-12 d^4\right )+d \left (2 c^3+20 c^2 d-57 c d^2+30 d^3\right ) \sec (e+f x)\right ) \tan (e+f x)}{6 a^2 f}+\frac{\left (5 (2 c-d) d^2 \left (2 c^2-3 c d+2 d^2\right ) \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a+a \sec (e+f x)}}\right )}{a f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}\\ &=\frac{5 (2 c-d) d^2 \left (2 c^2-3 c d+2 d^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-a \sec (e+f x)}}{\sqrt{a+a \sec (e+f x)}}\right ) \tan (e+f x)}{a f \sqrt{a-a \sec (e+f x)} \sqrt{a+a \sec (e+f x)}}-\frac{d \left (c^2+10 c d-12 d^2\right ) (c+d \sec (e+f x))^2 \tan (e+f x)}{3 a^2 f}+\frac{(c-d) (c+10 d) (c+d \sec (e+f x))^3 \tan (e+f x)}{3 f \left (a^2+a^2 \sec (e+f x)\right )}+\frac{(c-d) (c+d \sec (e+f x))^4 \tan (e+f x)}{3 f (a+a \sec (e+f x))^2}-\frac{d \left (4 \left (c^4+10 c^3 d-44 c^2 d^2+40 c d^3-12 d^4\right )+d \left (2 c^3+20 c^2 d-57 c d^2+30 d^3\right ) \sec (e+f x)\right ) \tan (e+f x)}{6 a^2 f}\\ \end{align*}

Mathematica [A]  time = 4.15357, size = 446, normalized size = 1.73 \[ \frac{240 d^2 \left (8 c^2 d-4 c^3-7 c d^2+2 d^3\right ) \cos ^4\left (\frac{1}{2} (e+f x)\right ) \left (\log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )\right )+2 \sin \left (\frac{1}{2} (e+f x)\right ) \cos \left (\frac{1}{2} (e+f x)\right ) \sec ^3(e+f x) \left (-100 c^3 d^2 \cos (3 (e+f x))-40 c^3 d^2 \cos (4 (e+f x))+280 c^2 d^3 \cos (3 (e+f x))+100 c^2 d^3 \cos (4 (e+f x))+\left (-300 c^3 d^2+840 c^2 d^3+60 c^4 d+6 c^5-585 c d^4+190 d^5\right ) \cos (e+f x)+4 \left (-40 c^3 d^2+130 c^2 d^3+5 c^4 d+2 c^5-95 c d^4+30 d^5\right ) \cos (2 (e+f x))-120 c^3 d^2+420 c^2 d^3+20 c^4 d \cos (3 (e+f x))+5 c^4 d \cos (4 (e+f x))+15 c^4 d+2 c^5 \cos (3 (e+f x))+2 c^5 \cos (4 (e+f x))+6 c^5-215 c d^4 \cos (3 (e+f x))-80 c d^4 \cos (4 (e+f x))-300 c d^4+66 d^5 \cos (3 (e+f x))+24 d^5 \cos (4 (e+f x))+104 d^5\right )}{24 a^2 f (\cos (e+f x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(c + d*Sec[e + f*x])^5)/(a + a*Sec[e + f*x])^2,x]

[Out]

(240*d^2*(-4*c^3 + 8*c^2*d - 7*c*d^2 + 2*d^3)*Cos[(e + f*x)/2]^4*(Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - L
og[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]) + 2*Cos[(e + f*x)/2]*(6*c^5 + 15*c^4*d - 120*c^3*d^2 + 420*c^2*d^3 -
300*c*d^4 + 104*d^5 + (6*c^5 + 60*c^4*d - 300*c^3*d^2 + 840*c^2*d^3 - 585*c*d^4 + 190*d^5)*Cos[e + f*x] + 4*(2
*c^5 + 5*c^4*d - 40*c^3*d^2 + 130*c^2*d^3 - 95*c*d^4 + 30*d^5)*Cos[2*(e + f*x)] + 2*c^5*Cos[3*(e + f*x)] + 20*
c^4*d*Cos[3*(e + f*x)] - 100*c^3*d^2*Cos[3*(e + f*x)] + 280*c^2*d^3*Cos[3*(e + f*x)] - 215*c*d^4*Cos[3*(e + f*
x)] + 66*d^5*Cos[3*(e + f*x)] + 2*c^5*Cos[4*(e + f*x)] + 5*c^4*d*Cos[4*(e + f*x)] - 40*c^3*d^2*Cos[4*(e + f*x)
] + 100*c^2*d^3*Cos[4*(e + f*x)] - 80*c*d^4*Cos[4*(e + f*x)] + 24*d^5*Cos[4*(e + f*x)])*Sec[e + f*x]^3*Sin[(e
+ f*x)/2])/(24*a^2*f*(1 + Cos[e + f*x])^2)

________________________________________________________________________________________

Maple [B]  time = 0.099, size = 766, normalized size = 3. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(c+d*sec(f*x+e))^5/(a+a*sec(f*x+e))^2,x)

[Out]

1/2/f/a^2*tan(1/2*f*x+1/2*e)*c^5+9/2/f/a^2*tan(1/2*f*x+1/2*e)*d^5-1/3/f/a^2*d^5/(tan(1/2*f*x+1/2*e)+1)^3-5/f/a
^2*ln(tan(1/2*f*x+1/2*e)+1)*d^5-5/f/a^2*d^5/(tan(1/2*f*x+1/2*e)+1)+3/2/f/a^2*d^5/(tan(1/2*f*x+1/2*e)+1)^2-1/3/
f/a^2*d^5/(tan(1/2*f*x+1/2*e)-1)^3+5/f/a^2*ln(tan(1/2*f*x+1/2*e)-1)*d^5-1/6/f/a^2*tan(1/2*f*x+1/2*e)^3*c^5+1/6
/f/a^2*tan(1/2*f*x+1/2*e)^3*d^5-5/f/a^2*d^5/(tan(1/2*f*x+1/2*e)-1)-3/2/f/a^2*d^5/(tan(1/2*f*x+1/2*e)-1)^2-5/2/
f/a^2*d^4/(tan(1/2*f*x+1/2*e)+1)^2*c+5/6/f/a^2*tan(1/2*f*x+1/2*e)^3*c^4*d-5/3/f/a^2*tan(1/2*f*x+1/2*e)^3*c^3*d
^2+5/3/f/a^2*tan(1/2*f*x+1/2*e)^3*c^2*d^3-5/6/f/a^2*tan(1/2*f*x+1/2*e)^3*c*d^4+5/2/f/a^2*tan(1/2*f*x+1/2*e)*c^
4*d-15/f/a^2*tan(1/2*f*x+1/2*e)*c^3*d^2+25/f/a^2*tan(1/2*f*x+1/2*e)*c^2*d^3+20/f/a^2*ln(tan(1/2*f*x+1/2*e)-1)*
c^2*d^3-10/f/a^2*ln(tan(1/2*f*x+1/2*e)-1)*c^3*d^2+10/f/a^2*ln(tan(1/2*f*x+1/2*e)+1)*c^3*d^2-20/f/a^2*ln(tan(1/
2*f*x+1/2*e)+1)*c^2*d^3+35/2/f/a^2*ln(tan(1/2*f*x+1/2*e)+1)*c*d^4-10/f/a^2*d^3/(tan(1/2*f*x+1/2*e)+1)*c^2+25/2
/f/a^2*d^4/(tan(1/2*f*x+1/2*e)+1)*c-35/2/f/a^2*ln(tan(1/2*f*x+1/2*e)-1)*c*d^4-10/f/a^2*d^3/(tan(1/2*f*x+1/2*e)
-1)*c^2+25/2/f/a^2*d^4/(tan(1/2*f*x+1/2*e)-1)*c+5/2/f/a^2*d^4/(tan(1/2*f*x+1/2*e)-1)^2*c-35/2/f/a^2*tan(1/2*f*
x+1/2*e)*c*d^4

________________________________________________________________________________________

Maxima [B]  time = 1.04235, size = 1042, normalized size = 4.04 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c+d*sec(f*x+e))^5/(a+a*sec(f*x+e))^2,x, algorithm="maxima")

[Out]

1/6*(d^5*(4*(9*sin(f*x + e)/(cos(f*x + e) + 1) - 20*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 15*sin(f*x + e)^5/(c
os(f*x + e) + 1)^5)/(a^2 - 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 3*a^2*sin(f*x + e)^4/(cos(f*x + e) + 1)
^4 - a^2*sin(f*x + e)^6/(cos(f*x + e) + 1)^6) + (27*sin(f*x + e)/(cos(f*x + e) + 1) + sin(f*x + e)^3/(cos(f*x
+ e) + 1)^3)/a^2 - 30*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/a^2 + 30*log(sin(f*x + e)/(cos(f*x + e) + 1) -
1)/a^2) - 5*c*d^4*(6*(3*sin(f*x + e)/(cos(f*x + e) + 1) - 5*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/(a^2 - 2*a^2*
sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^4/(cos(f*x + e) + 1)^4) + (21*sin(f*x + e)/(cos(f*x + e
) + 1) + sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/a^2 - 21*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/a^2 + 21*log(s
in(f*x + e)/(cos(f*x + e) + 1) - 1)/a^2) + 10*c^2*d^3*((15*sin(f*x + e)/(cos(f*x + e) + 1) + sin(f*x + e)^3/(c
os(f*x + e) + 1)^3)/a^2 - 12*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/a^2 + 12*log(sin(f*x + e)/(cos(f*x + e)
+ 1) - 1)/a^2 + 12*sin(f*x + e)/((a^2 - a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2)*(cos(f*x + e) + 1))) - 10*c^3
*d^2*((9*sin(f*x + e)/(cos(f*x + e) + 1) + sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/a^2 - 6*log(sin(f*x + e)/(cos(
f*x + e) + 1) + 1)/a^2 + 6*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/a^2) + 5*c^4*d*(3*sin(f*x + e)/(cos(f*x +
e) + 1) + sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/a^2 + c^5*(3*sin(f*x + e)/(cos(f*x + e) + 1) - sin(f*x + e)^3/(
cos(f*x + e) + 1)^3)/a^2)/f

________________________________________________________________________________________

Fricas [A]  time = 0.539205, size = 1037, normalized size = 4.02 \begin{align*} \frac{15 \,{\left ({\left (4 \, c^{3} d^{2} - 8 \, c^{2} d^{3} + 7 \, c d^{4} - 2 \, d^{5}\right )} \cos \left (f x + e\right )^{5} + 2 \,{\left (4 \, c^{3} d^{2} - 8 \, c^{2} d^{3} + 7 \, c d^{4} - 2 \, d^{5}\right )} \cos \left (f x + e\right )^{4} +{\left (4 \, c^{3} d^{2} - 8 \, c^{2} d^{3} + 7 \, c d^{4} - 2 \, d^{5}\right )} \cos \left (f x + e\right )^{3}\right )} \log \left (\sin \left (f x + e\right ) + 1\right ) - 15 \,{\left ({\left (4 \, c^{3} d^{2} - 8 \, c^{2} d^{3} + 7 \, c d^{4} - 2 \, d^{5}\right )} \cos \left (f x + e\right )^{5} + 2 \,{\left (4 \, c^{3} d^{2} - 8 \, c^{2} d^{3} + 7 \, c d^{4} - 2 \, d^{5}\right )} \cos \left (f x + e\right )^{4} +{\left (4 \, c^{3} d^{2} - 8 \, c^{2} d^{3} + 7 \, c d^{4} - 2 \, d^{5}\right )} \cos \left (f x + e\right )^{3}\right )} \log \left (-\sin \left (f x + e\right ) + 1\right ) + 2 \,{\left (2 \, d^{5} + 2 \,{\left (2 \, c^{5} + 5 \, c^{4} d - 40 \, c^{3} d^{2} + 100 \, c^{2} d^{3} - 80 \, c d^{4} + 24 \, d^{5}\right )} \cos \left (f x + e\right )^{4} +{\left (2 \, c^{5} + 20 \, c^{4} d - 100 \, c^{3} d^{2} + 280 \, c^{2} d^{3} - 215 \, c d^{4} + 66 \, d^{5}\right )} \cos \left (f x + e\right )^{3} + 6 \,{\left (10 \, c^{2} d^{3} - 5 \, c d^{4} + 2 \, d^{5}\right )} \cos \left (f x + e\right )^{2} +{\left (15 \, c d^{4} - 2 \, d^{5}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{12 \,{\left (a^{2} f \cos \left (f x + e\right )^{5} + 2 \, a^{2} f \cos \left (f x + e\right )^{4} + a^{2} f \cos \left (f x + e\right )^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c+d*sec(f*x+e))^5/(a+a*sec(f*x+e))^2,x, algorithm="fricas")

[Out]

1/12*(15*((4*c^3*d^2 - 8*c^2*d^3 + 7*c*d^4 - 2*d^5)*cos(f*x + e)^5 + 2*(4*c^3*d^2 - 8*c^2*d^3 + 7*c*d^4 - 2*d^
5)*cos(f*x + e)^4 + (4*c^3*d^2 - 8*c^2*d^3 + 7*c*d^4 - 2*d^5)*cos(f*x + e)^3)*log(sin(f*x + e) + 1) - 15*((4*c
^3*d^2 - 8*c^2*d^3 + 7*c*d^4 - 2*d^5)*cos(f*x + e)^5 + 2*(4*c^3*d^2 - 8*c^2*d^3 + 7*c*d^4 - 2*d^5)*cos(f*x + e
)^4 + (4*c^3*d^2 - 8*c^2*d^3 + 7*c*d^4 - 2*d^5)*cos(f*x + e)^3)*log(-sin(f*x + e) + 1) + 2*(2*d^5 + 2*(2*c^5 +
 5*c^4*d - 40*c^3*d^2 + 100*c^2*d^3 - 80*c*d^4 + 24*d^5)*cos(f*x + e)^4 + (2*c^5 + 20*c^4*d - 100*c^3*d^2 + 28
0*c^2*d^3 - 215*c*d^4 + 66*d^5)*cos(f*x + e)^3 + 6*(10*c^2*d^3 - 5*c*d^4 + 2*d^5)*cos(f*x + e)^2 + (15*c*d^4 -
 2*d^5)*cos(f*x + e))*sin(f*x + e))/(a^2*f*cos(f*x + e)^5 + 2*a^2*f*cos(f*x + e)^4 + a^2*f*cos(f*x + e)^3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{c^{5} \sec{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx + \int \frac{d^{5} \sec ^{6}{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx + \int \frac{5 c d^{4} \sec ^{5}{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx + \int \frac{10 c^{2} d^{3} \sec ^{4}{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx + \int \frac{10 c^{3} d^{2} \sec ^{3}{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx + \int \frac{5 c^{4} d \sec ^{2}{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx}{a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c+d*sec(f*x+e))**5/(a+a*sec(f*x+e))**2,x)

[Out]

(Integral(c**5*sec(e + f*x)/(sec(e + f*x)**2 + 2*sec(e + f*x) + 1), x) + Integral(d**5*sec(e + f*x)**6/(sec(e
+ f*x)**2 + 2*sec(e + f*x) + 1), x) + Integral(5*c*d**4*sec(e + f*x)**5/(sec(e + f*x)**2 + 2*sec(e + f*x) + 1)
, x) + Integral(10*c**2*d**3*sec(e + f*x)**4/(sec(e + f*x)**2 + 2*sec(e + f*x) + 1), x) + Integral(10*c**3*d**
2*sec(e + f*x)**3/(sec(e + f*x)**2 + 2*sec(e + f*x) + 1), x) + Integral(5*c**4*d*sec(e + f*x)**2/(sec(e + f*x)
**2 + 2*sec(e + f*x) + 1), x))/a**2

________________________________________________________________________________________

Giac [B]  time = 1.29513, size = 716, normalized size = 2.78 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c+d*sec(f*x+e))^5/(a+a*sec(f*x+e))^2,x, algorithm="giac")

[Out]

1/6*(15*(4*c^3*d^2 - 8*c^2*d^3 + 7*c*d^4 - 2*d^5)*log(abs(tan(1/2*f*x + 1/2*e) + 1))/a^2 - 15*(4*c^3*d^2 - 8*c
^2*d^3 + 7*c*d^4 - 2*d^5)*log(abs(tan(1/2*f*x + 1/2*e) - 1))/a^2 - 2*(60*c^2*d^3*tan(1/2*f*x + 1/2*e)^5 - 75*c
*d^4*tan(1/2*f*x + 1/2*e)^5 + 30*d^5*tan(1/2*f*x + 1/2*e)^5 - 120*c^2*d^3*tan(1/2*f*x + 1/2*e)^3 + 120*c*d^4*t
an(1/2*f*x + 1/2*e)^3 - 40*d^5*tan(1/2*f*x + 1/2*e)^3 + 60*c^2*d^3*tan(1/2*f*x + 1/2*e) - 45*c*d^4*tan(1/2*f*x
 + 1/2*e) + 18*d^5*tan(1/2*f*x + 1/2*e))/((tan(1/2*f*x + 1/2*e)^2 - 1)^3*a^2) - (a^4*c^5*tan(1/2*f*x + 1/2*e)^
3 - 5*a^4*c^4*d*tan(1/2*f*x + 1/2*e)^3 + 10*a^4*c^3*d^2*tan(1/2*f*x + 1/2*e)^3 - 10*a^4*c^2*d^3*tan(1/2*f*x +
1/2*e)^3 + 5*a^4*c*d^4*tan(1/2*f*x + 1/2*e)^3 - a^4*d^5*tan(1/2*f*x + 1/2*e)^3 - 3*a^4*c^5*tan(1/2*f*x + 1/2*e
) - 15*a^4*c^4*d*tan(1/2*f*x + 1/2*e) + 90*a^4*c^3*d^2*tan(1/2*f*x + 1/2*e) - 150*a^4*c^2*d^3*tan(1/2*f*x + 1/
2*e) + 105*a^4*c*d^4*tan(1/2*f*x + 1/2*e) - 27*a^4*d^5*tan(1/2*f*x + 1/2*e))/a^6)/f